SM275 · Mathematical Methods for Economics

Exam 2 - 28 October 2019

Instructions

- You have until the end of the class period to complete this exam.
- You may not use your calculator.
- You may not consult any other outside materials (e.g. notes, textbooks, homework, computer).
- **Show all your work.** To receive full credit, your solution must be completely correct, sufficiently justified, and easy to follow.
- Keep this booklet intact.

Problem	Weight	Score
1	1	
2	1	
3	1	
4	1	
5	1	
6	1	
7	1	
8	2	
9	1	
10	2	
11	1	
12	1	
13	1	
14	1	
15	2	
16	2	
Total		/ 200

For the problems on this page, let

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 3 & -2 \end{bmatrix} \quad B = \begin{bmatrix} 4 & -2 \\ 0 & 3 \end{bmatrix} \quad C = \begin{bmatrix} -1 & 4 \\ 3 & 5 \\ -2 & 0 \end{bmatrix}$$

If the quantity you are asked to compute is undefined, briefly explain why.

Problem 1. Compute A - 2C.

Problem 2. Compute *AB*.

Problem 3. Compute *AC*.

Problem 4. Compute B^{-1} .

• You can compute this using the formula for an inverse of a 2 × 2 matrix (page 2 of Lesson 12), or using elementary row operations (page 8 of Lesson 12).

For the problems on this page, let

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 3 & -2 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

If the quantity you are asked to compute is undefined, briefly explain why.

Problem 5. Compute A^T .

Problem 6. Compute *AB*.

• Note that *B* is an identity matrix. See Section 10 of Lesson 11.

Problem 7. Compute BA^TC . What size is BA^TC ?

• Note that *C* is a null matrix. See Section 11 of Lesson 11.

Consider the system of linear equations below.

$$2x_1 + 4x_2 - 2x_3 + 2x_4 + 4x_5 = 2$$

$$x_1 + 2x_2 - x_3 + 2x_4 = 4$$

$$3x_1 + 6x_2 - 2x_3 + x_4 + 9x_5 = 1$$

$$5x_1 + 10x_2 - 4x_3 + 5x_4 + 9x_5 = 9$$

The reduced row echelon form of the augmented matrix for this system is

$$\begin{bmatrix} 1 & 2 & 0 & 0 & 3 & 2 \\ 0 & 0 & 1 & 0 & -1 & 4 \\ 0 & 0 & 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Problem 8. What are the solutions of this system? Write the solutions in vector form. If there are no solutions, simply state so.

• Take a look at Example 9 in Lesson 12, as well as Problems 3.2b and 3.2e assigned for homework, for similar problems.

Problem 9. How many solutions does this system have?

- I did not grade your explanations for this problem.
- Some of you wrote that the system has an infinite number of solutions because the RREF contains the equation 0 = 0. This isn't completely correct.
- If the RREF has a row of the form $\begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$, then the system has no solutions because the equation corresponding to this row is 0 = 1.
- If there is no such row in the RREF:
 - If there is a free variable, then there are infinitely many solutions.
 - If there are no free variables, then there is exactly one solution.

For this page, let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 4 & 0 \end{bmatrix}$$
.

Problem 10. Compute A^{-1} . (You may assume it exists.)

- Most of you started correctly.
- Be careful with your arithmetic!
- Take a look at page 8 of Lesson 12 if you need help getting started.

Problem 11. Does |A| = 0? Briefly explain without computing |A|.

- Some of you wrote: Since there isn't one row that is a multiple of another row, therefore $|A| \neq 0$. This is a misuse of Property V from Lesson 13, which says: If one row is a multiple of another row, then |A| = 0.
- Take a look Section 4 of Lesson 13.

For this page, let

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 4 & 1 & 3 \\ 3 & 0 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -7 & 2 \\ 1 & ?? & 2 \\ 1 & 4 & 2 \end{bmatrix} \qquad C = \begin{bmatrix} 4 & ?? & 5 \\ 0 & -1 & ?? \\ 0 & 0 & 2 \end{bmatrix}$$

Note that some of the entries in the above matrices are deliberately missing.

Problem 12. Compute |A|.

Problem 13. Compute |B|.

• Take a look at Section 5 of Lesson 13.

Problem 14. Compute |C|.

• Take a look at Section 5 of Lesson 13.

Problem 15. Recall the national income model

$$Y = C + I_0 + G_0 (1)$$

$$C = a + bY \qquad (0 < b < 1) \tag{2}$$

where

Y =national income

C =consumer expenditure

 I_0 = business expenditure (i.e., investment)

 G_0 = government expenditure

Suppose $I_0 = 7$, $G_0 = 2$, a = 3, $b = \frac{1}{3}$. Use Cramer's rule to find the national income Y and consumer expenditure C.

• Take a look at Section 3 and Problem 2 in Lesson 15.

Problem 16. Consider an economy with two industries. Industry 1 manufactures product 1, and industry 2 manufactures product 2.

Industry 1 uses 0.4 dollars of product 1 and 0.5 dollars of product 2 for every dollar of product 1 it manufactures. Industry 2 uses 0.1 dollars of product 1 and 0.3 dollars of product 2 for every dollar of product 2 it manufactures.

Consumers demand \$20,000 of product 1 and \$10,000 of product 2.

Let

$$x_1$$
 = output of industry 1, in dollars x_2 = output of industry 2, in dollars

Write the Leontief input-output matrix equation for this model — i.e., the matrix equation that ensures that each industry's output is equal to the input demand and the final demand for its product. Your answer should look like this:

$$\begin{bmatrix} \text{some matrix} \\ \text{with numbers} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \text{some other matrix} \\ \text{with numbers} \end{bmatrix}$$

- Many of you identified the input matrix *A* correctly, but did not write the correct equation for the Leontief input-output model.
- Take a look at page 3 of Lesson 14.