Exam 2-28 October 2019

Instructions

- You have until the end of the class period to complete this exam.
- You may not use your calculator.
- You may not consult any other outside materials (e.g. notes, textbooks, homework, computer).
- Show all your work. To receive full credit, your solution must be completely correct, sufficiently justified, and easy to follow.
- Keep this booklet intact.

Problem	Weight	Score
1	1	
2	1	
3	1	
4	1	
5	1	
6	1	
7	1	
8	2	
9	1	
10	2	
11	1	
12	1	
13	1	
14	1	
15	2	
16	2	
Total		/ 200

For the problems on this page, let

$$
A=\left[\begin{array}{rr}
2 & 0 \\
-1 & 1 \\
3 & -2
\end{array}\right] \quad B=\left[\begin{array}{rr}
4 & -2 \\
0 & 3
\end{array}\right] \quad C=\left[\begin{array}{rr}
-1 & 4 \\
3 & 5 \\
-2 & 0
\end{array}\right]
$$

If the quantity you are asked to compute is undefined, briefly explain why.
Problem 1. Compute $A-2 C$.

Problem 2. Compute $A B$.

Problem 3. Compute $A C$.

Problem 4. Compute B^{-1}.

- You can compute this using the formula for an inverse of a 2×2 matrix (page 2 of Lesson 12), or using elementary row operations (page 8 of Lesson 12).

For the problems on this page, let

$$
A=\left[\begin{array}{rr}
2 & 0 \\
-1 & 1 \\
3 & -2
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad C=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

If the quantity you are asked to compute is undefined, briefly explain why.
Problem 5. Compute A^{T}.

Problem 6. Compute $A B$.

- Note that B is an identity matrix. See Section 10 of Lesson 11.

Problem 7. Compute $B A^{T} C$. What size is $B A^{T} C$?

- Note that C is a null matrix. See Section 11 of Lesson 11.

Consider the system of linear equations below.

$$
\begin{aligned}
2 x_{1}+4 x_{2}-2 x_{3}+2 x_{4}+4 x_{5} & =2 \\
x_{1}+2 x_{2}-x_{3}+2 x_{4} & =4 \\
3 x_{1}+6 x_{2}-2 x_{3}+x_{4}+9 x_{5} & =1 \\
5 x_{1}+10 x_{2}-4 x_{3}+5 x_{4}+9 x_{5} & =9
\end{aligned}
$$

The reduced row echelon form of the augmented matrix for this system is

$$
\left[\begin{array}{rrrrrr}
1 & 2 & 0 & 0 & 3 & 2 \\
0 & 0 & 1 & 0 & -1 & 4 \\
0 & 0 & 0 & 1 & -2 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Problem 8. What are the solutions of this system? Write the solutions in vector form. If there are no solutions, simply state so.

- Take a look at Example 9 in Lesson 12, as well as Problems 3.2b and 3.2e assigned for homework, for similar problems.

Problem 9. How many solutions does this system have?

- I did not grade your explanations for this problem.
- Some of you wrote that the system has an infinite number of solutions because the RREF contains the equation $0=0$. This isn't completely correct.
- If the RREF has a row of the form $\left[\begin{array}{lllll}0 & 0 & \cdots & 0 & 1\end{array}\right]$, then the system has no solutions because the equation corresponding to this row is $0=1$.
- If there is no such row in the RREF:
- If there is a free variable, then there are infinitely many solutions.
- If there are no free variables, then there is exactly one solution.

For this page, let $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 4 & 0\end{array}\right]$.
Problem 10. Compute A^{-1}. (You may assume it exists.)

- Most of you started correctly.
- Be careful with your arithmetic!
- Take a look at page 8 of Lesson 12 if you need help getting started.

Problem 11. Does $|A|=0$? Briefly explain without computing $|A|$.

- Some of you wrote: Since there isn't one row that is a multiple of another row, therefore $|A| \neq 0$. This is a misuse of Property V from Lesson 13, which says: If one row is a multiple of another row, then $|A|=0$.
- Take a look Section 4 of Lesson 13.

For this page, let

$$
A=\left[\begin{array}{rrr}
1 & -1 & 0 \\
4 & 1 & 3 \\
3 & 0 & 3
\end{array}\right] \quad B=\left[\begin{array}{rrr}
1 & -7 & 2 \\
1 & ? ? & 2 \\
1 & 4 & 2
\end{array}\right] \quad C=\left[\begin{array}{rrr}
4 & ? ? & 5 \\
0 & -1 & ? ? \\
0 & 0 & 2
\end{array}\right]
$$

Note that some of the entries in the above matrices are deliberately missing.
Problem 12. Compute $|A|$.

Problem 13. Compute $|B|$.

- Take a look at Section 5 of Lesson 13.

Problem 14. Compute $|C|$.

- Take a look at Section 5 of Lesson 13.

Problem 15. Recall the national income model

$$
\begin{align*}
& Y=C+I_{0}+G_{0} \tag{1}\\
& C=a+b Y \quad(0<b<1) \tag{2}
\end{align*}
$$

where

$$
\begin{aligned}
Y & =\text { national income } \\
C & =\text { consumer expenditure } \\
I_{0} & =\text { business expenditure (i.e., investment) } \\
G_{0} & =\text { government expenditure }
\end{aligned}
$$

Suppose $I_{0}=7, G_{0}=2, a=3, b=\frac{1}{3}$. Use Cramer's rule to find the national income Y and consumer expenditure C.

- Take a look at Section 3 and Problem 2 in Lesson 15.

Problem 16. Consider an economy with two industries. Industry 1 manufactures product 1 , and industry 2 manufactures product 2.

Industry 1 uses 0.4 dollars of product 1 and 0.5 dollars of product 2 for every dollar of product 1 it manufactures. Industry 2 uses 0.1 dollars of product 1 and 0.3 dollars of product 2 for every dollar of product 2 it manufactures.
Consumers demand $\$ 20,000$ of product 1 and $\$ 10,000$ of product 2.
Let

$$
\begin{aligned}
& x_{1}=\text { output of industry } 1, \text { in dollars } \\
& x_{2}=\text { output of industry } 2, \text { in dollars }
\end{aligned}
$$

Write the Leontief input-output matrix equation for this model - i.e., the matrix equation that ensures that each industry's output is equal to the input demand and the final demand for its product. Your answer should look like this:
$\left[\begin{array}{c}\text { some matrix } \\ \text { with numbers }\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}\text { some other matrix } \\ \text { with numbers }\end{array}\right]$

- Many of you identified the input matrix A correctly, but did not write the correct equation for the Leontief input-output model.
- Take a look at page 3 of Lesson 14.

